Flow rate of the concentrate was measured on the balance and abstracted from flow rate of the feed in order to calculate water flux through the membrane according to Eq. 1.

\[ J_w = \frac{\dot{Q}_{\text{Feed}} - \dot{Q}_{\text{Concentrate}}}{A} \]  

where:
- \( J_w \) is water flux (L/m²h)
- \( \dot{Q}_{\text{Feed}} \) is flow rate of feed (L/h)
- \( \dot{Q}_{\text{Concentrate}} \) is flow rate of concentrate (L/h)
- \( A \) is membrane area (m²)

Conductivity of the concentrate is measured in order to calculate reverse salt flux according to the Eq. 2.

\[ J_s = \frac{\dot{Q}_{\text{Concentrate}}}{A} \kappa B \]  

where:
- \( J_s \) is reverse salt flux (g/m²h)
- \( \dot{Q}_{\text{Concentrate}} \) is flow rate of concentrate (L/h)
- \( A \) is membrane area (m²)
- \( \kappa \) is conductivity (µS/cm)
- \( B \) is proportionality coefficient (0.5362 µS/cm per 1 mg/L of NaCl)

* In order to maintain water flux and reverse salt flux between experiments, it is strongly recommended to flush FO module with DI water after use. We propose to flush the module with DI water for 5 min from the feed and draw side at 150 L/h and subsequently for 30 min only from the feed side at 150 L/h.