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Abstract

This short review outlines ultrafiltration of various biological nanoparticles and medical nanocarriers. Here, ultrafiltration is used 
to purify, concentrate and separate nanoparticles from substrates. The nanomaterials discussed comprise metals, polymers, 
lipids (in vesicles and micelles) and proteins. Guidance is provided for selection of the ideal performing ultrafiltration devices 
with the optimum molecular weight cutoff (MWCO) for these typical applications and materials.
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Introduction

Paul Ehrlich was inspired by the idea of the “magic bullet”* 
when he for the first time described in theory toxic drugs 
assembled to so-called “Nanocarriers” in 1908.1 Today, 
Nanocarriers have found multiple applications in modern 
medicine and biotechnology. A key application for these 
special nanomaterials is a targeted delivery of drugs 
where they act as transport modules (i. e. as nanoparticles, 
vesicles, or micelles) for the active ingredient.2,3,4,5 This is 
assumed to be more effective and less toxic to the (human) 
organism compared to traditionally administered drug 
substances.6 Besides drug delivery, various further fields 
using Nanocarriers evolved during the last decades; e. g. 
magnetic resonance imaging or stem cell gene therapy 
with metal-based nanoparticles,7,8 or optical imaging with 
quantum dots.9 

Nanocarriers can be categorized by their starting 
material (i. e. metal-, lipid-, polymer-, and protein-based) 
and by their formation after preparation (i. e. vesicles, 
particles and micelles). In general, the preparation of 
a nanoparticle suspension or a vesicle dispersion in an 
aqueous medium consists of three steps: a) assembly 
of the Nanocarriers (for example, by injections, film 
hydration, or reverse phase evaporation), b) purification 
(for example, by chromatography, dialysis or ultrafiltration), 
and c) concentration (for example, by ultrafiltration or 
evaporation). 

* In German “Zauberkugel”, opera “Freischütz” by Carl Maria von Weber

This short review provides examples of recent literature 
dealing with the preparation of Nanocarriers. Particular 
focus is laid on the concentration and purification steps 
which were performed via ultrafiltration with Sartorius 
Vivaspin® or Vivaflow® devices with different pore sizes 
(respectively molecular weight cut-off, MWCO). The 
Vivaspin® portfolio spans a volume range from 0.1 to 20 mL, 
whereas the Vivaflow® system covers volumes from 0.1  to 
5 liters. Thus, Sartorius offers an unrivaled wide range of 
processable sample volumes, membrane materials and 
MWCOs to meet the different requirements of their 
intended use. Challenges in this context are buffer exchange 
after synthesis, desalting and washing,10,11 exclusion of 
solubilized compounds,12,13,14 or aggregates.15  

Purification is essential to obtain isosmotic conditions for  
in vivo applications, to prevent aggregation or agglomeration 
and to remove free toxic drugs, ligands, or other substrates 
potentially triggering side effects. Concentration steps 
are essential to adjust the amount of pharmaceutical 
active ingredient in the drug and achieve the anticipated 
therapeutic or diagnostic effect. 
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During purification, the separation of free substances 
(starting material) from the desired Nanocarriers via size-
exclusion chromatography (SEC) leads to an unavoidable 
dilution and to the necessity of a subsequent concentration 
step. In contrast, dialysis purifies without significant dilution 
but a concentration step can still be mandatory, if higher 
Nanocarrier concentrations are necessary. Both separation 
methods require quite extensive, costly and time-
consuming manual handling. This drawback is overcome 
with the ultrafiltration utilized by centrifugation in Vivaspin® 
or with a peristaltic pump for the Vivaflow® system. This 
technique is less expensive and quickly performed with 
very little manual input. Noteworthy is that purification and 
concentration steps are performed simultaneously.16 

After the Nanocarrier is purified, the determination of 
drug loading (conjugation or encapsulation efficiency) is 
commonly performed. The conjugation or encapsulation 
efficiency is one of the reference values to describe and 
characterize Nanocarriers. Other important properties are 
the zeta potential and the size distribution determined via 
photon correlation spectroscopy (PCS), high-resolution 
transmission electron microscopy (HRTEM) imaging, or 
dynamic light scattering (DLS). Prior to performing these 
different characterizations, a successful purification and 
concentration of the suspension or dispersion is essential. 

In the following tables you can find an overview of 
publications using ultrafiltration steps for the purification 
and concentration of different kinds of Nanocarriers.  
Table 2 provides guidance on which devices and MWCOs 
to use.
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Table 1 summarizes examples of Nanocarrier ultrafiltration applications using Sartorius Vivaspin® or Vivaflow®: 
 
Nanocarrier:  
Nanoparticle, Vesicle, Micelle

Size distribution obtained via (HR)TEM or DLS,
Z-Average via PCS and others-if reported

Application Ref.

Nanoparticles from metal, metal oxides and functionalized metals

Iron oxides nanoparticles with  
cisplatinbearing polymer coating

SD: 4.5 ± 0.9 nm via X-Ray-Diffraction Analysis Magnetic resonance imaging 7

Functionalized iron oxide nanoparticles SD: 38 and 40 nm via DLS Stem cell gene therapy and tracking 8

Gold nanoparticles SD: 0.8 – 10.4 nm via Atomic Force Microscopy Antimicrobial activity 17

Protein coated gold nanoparticles SD: 15 and 80 nm via TEM Drug delivery 18

Functionalized gold nanoparticles Core-SD: 2 nm via TEM Targeted imaging tool and antigen delivery 19

Functionalized gadolinium-based
nanoparticles

Z-Average: 1.1 ± 0.6 nm and 4 – 14 nm Diagnostic and therapeutic application 20, 21

Functionalized nanocrystals 10 to 20 nm Quantum dots for imaging 9

Nanoparticles from polymers, functionalized polymers and polymersomes

Polymer based Nanoparticles Drug delivery 22

Curdlan coated polymer nanoparticles Z-Average: 280 – 480 nm depending on the
composition

Macrophage stimulant activity  
and drug delivery

23

Docetaxel-carboxymethylcellulose  
Polymer Nanoparticles

Z-Average: 118 ± 1.8 nm Anti-cancer efficacy studies 4

Functionalized Polymersomes Z-Average: 185 nm Surface functionalization studies 3

Lipid Nanoparticles and Liposomes

Liposomes and micelles Z-Average: 100 nm for Liposomes and 15 nm  
for micelles

Ischemia-reperfusion injury 25

Solid lipid Nanoparticles Z-Average: 100 – 120 nm depending on the 
used lipid

Drug delivery (Brain Targeting) 26

Bacterial outer membrane vesicles SD: 124 nm via TRPS Tunable resistive pulse sensing (TRPS)
Analysis

27

Bacterial outer membrane vesicles Basic research 28

Bacterial outer membrane vesicles SD: 95 nm Basic research 29

Bacterial outer membrane vesicles SD: 50 – 150 nm via TEM Basic research 30

Liposomes Drug delivery 2

Liposomes Encapsulated hydrophilic drugs (Drug delivery) 31

Micelles

Micelles Drug delivery 4

Hydrophobic drug micelles  
based on polymers

SD via DLS: 39 – 165 nm depending on
compound in use

Drug delivery 14

Protein Nanoparticles

Protein Nanoparticles SD: 20 – 40 nm via DLS Drug carrier studies 32

SD = Size distribution
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Nanocarrier:  
Nanoparticle, Vesicle, Micelle

Sartorius  
Ultrafiltration Device

MWCO Ultrafiltration purpose Ref.

Nanoparticles from metal, metal oxides and functionalized metals

Iron oxides nanoparticles with  
cisplatinbearing polymer coating

Vivaspin® 20 100 kDa Purification and concentration 7

Functionalized iron oxide nanoparticles Vivaspin® 20 100 kDa Washing step 8

Gold nanoparticles Vivaspin® 20 5 kDa Purification step 17

Protein coated gold nanoparticles Vivaspin® 6 10 kDa Separation of Nanoparticles | Dyes and washing 18

Functionalized gold nanoparticles Vivaspin® 10 kDa Purification step 19

Functionalized gadolinium-based
nanoparticles

Vivaspin® 5 kDa  
and 10 kDa

Purification and concentration 20, 21

Functionalized nanocrystals Vivaspin® 300 kDa  
and 50 kDa

Separation of quantum dots-antibody conjugates  
from starting material (prior to enumeration)

9

Table 2 lists example Sartorius devices and typical MWCOs used for each nanocarrier ultrafiltration application.

Nanoparticles from polymers, functionalized polymers and polymersomes

Polymer based Nanoparticles Vivaspin® 30 kDa Purification and concentration 22

Curdlan coated polymer nanoparticles Vivaspin® 20 3 kDa Washing 23

Docetaxel-carboxymethylcellulose  
Polymer Nanoparticles

Vivaspin® 10 kDa Concentration 4

Functionalized Polymersomes Vivaspin® 20 10 kDa Concentration 3

Lipid Nanoparticles and Liposomes

Liposomes and micelles Vivaspin® 20 100 kDa Concentration 25

Solid lipid Nanoparticles Vivaflow® 50 100 kDa Purification 26

Bacterial outer membrane vesicles Vivaflow® 200 100 kDa Buffer exchange and concentration 27

Bacterial outer membrane vesicles Vivaspin® 500 and 20 100 kDa Buffer exchange and concentration 28

Bacterial outer membrane vesicles Vivaflow® 200 100 kDa Buffer exchange and concentration 29

Bacterial outer membrane vesicles Vivaspin® 100 kDa Buffer exchange and concentration 30

Liposomes Vivaspin® 100 kDa External buffer exchange 2

Liposomes Vivaflow® 50 100 kDa Elimination of the free drug 31

Micelles

Micelles Vivaspin® 30 kDa Separation of free substrate and concentration 4

Hydrophobic drug micelles  
based on polymers

Vivaflow® Surfactant removal 14

Protein Nanoparticles

Protein Nanoparticles Vivaspin® 500 3 kDa Separation of the free from the encapsulated drug 
(Drug binding quantification by subsequent  
UV-vis analysis)

32
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